Exercise 66

Find the points on the ellipse $x^{2}+2 y^{2}=1$ where the tangent line has slope 1 .

Solution

Take the derivative of both sides with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+2 y^{2}\right) & =\frac{d}{d x}(1) \\
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(2 y^{2}\right) & =0 \\
(2 x)+(4 y) \cdot \frac{d y}{d x} & =0
\end{aligned}
$$

Solve for $d y / d x$.

$$
\begin{aligned}
4 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =-\frac{2 x}{4 y} \\
& =-\frac{x}{2 y}
\end{aligned}
$$

Set $d y / d x=1$.

$$
\begin{aligned}
1 & =-\frac{x}{2 y} \\
y & =-\frac{x}{2}
\end{aligned}
$$

Therefore, the points on the line defined by $y=-x / 2$ all have a slope of 1 . Find the points that are both on this line and on the ellipse by solving the following system of equations.

$$
\left\{\begin{array}{l}
x^{2}+2 y^{2}=1 \\
y=-\frac{x}{2}
\end{array}\right.
$$

Substitute this formula for y into the first equation and solve for x.

$$
\begin{gathered}
x^{2}+2\left(-\frac{x}{2}\right)^{2}=1 \\
x^{2}+2\left(\frac{x^{2}}{4}\right)=1 \\
x^{2}+\frac{x^{2}}{2}=1 \\
\frac{3 x^{2}}{2}=1 \\
x^{2}=\frac{2}{3} \\
x= \pm \sqrt{\frac{2}{3}}
\end{gathered}
$$

Since $y=-x / 2$, the corresponding y-coordinates are

$$
\begin{gathered}
x=-\sqrt{\frac{2}{3}}: \quad y=-\frac{1}{2}\left(-\sqrt{\frac{2}{3}}\right)=\frac{1}{\sqrt{6}} \\
x=\sqrt{\frac{2}{3}}: \quad y=-\frac{1}{2}\left(\sqrt{\frac{2}{3}}\right)=-\frac{1}{\sqrt{6}},
\end{gathered}
$$

which means the points on the ellipse $x^{2}+2 y^{2}=1$ where the tangent line has slope 1 are

$$
\left(-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{6}}\right) \quad \text { and } \quad\left(\sqrt{\frac{2}{3}},-\frac{1}{\sqrt{6}}\right) .
$$

Below is a graph of the curve and its tangent lines with slope 1.

